Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6999, 2024 03 24.
Article in English | MEDLINE | ID: mdl-38523182

ABSTRACT

Gaining the ability to fly actively was a ground-breaking moment in insect evolution, providing an unprecedented advantage over other arthropods. Nevertheless, active flight was a costly innovation, requiring the development of wings and flight muscles, the provision of sufficient energetic resources, and a complex flight control system. Although wings, flight muscles, and the energetic budget of insects have been intensively studied in the last decades, almost nothing is known regarding the flight-control devices of many crucial insect groups, especially beetles (Coleoptera). Here, we conducted a phylogenetic-informed analysis of flight-related mechanosensors in 28 species of bark beetles (Curculionidae: Scolytinae, Platypodinae), an economically and ecologically important group of insects characterized by striking differences in dispersal abilities. The results indicated that beetle flight apparatus is equipped with different functional types of mechanosensors, including strain- and flow-encoding sensilla. We found a strong effect of allometry on the number of mechanosensors, while no effect of relative wing size (a proxy of flight investment) was identified. Our study constitutes the first step to understanding the drivers and constraints of the evolution of flight-control devices in Coleoptera, including bark beetles. More research, including a quantitative neuroanatomical analysis of beetle wings, should be conducted in the future.


Subject(s)
Coleoptera , Weevils , Animals , Weevils/physiology , Phylogeny , Plant Bark , Coleoptera/physiology , Wings, Animal/physiology , Flight, Animal/physiology
2.
Can J Infect Dis Med Microbiol ; 2022: 9297974, 2022.
Article in English | MEDLINE | ID: mdl-36213437

ABSTRACT

Nebulizer therapy is commonly used for patients with obstructive pulmonary disease or acute pulmonary infections with signs of obstruction. It is considered a "potential aerosol-generating procedure," and the risk of disease transmission to health care workers is uncertain. The aim of this pilot study was to assess whether nebulizer therapy in hospitalized COVID-19 patients is associated with increased dispersion of SARS-CoV-2. Air samples collected prior to and during nebulizer therapy were analyzed by RT-PCR and cell culture. Total aerosol particle concentrations were also quantified. Of 13 patients, seven had quantifiable virus in oropharynx samples, and only two had RT-PCR positive air samples. For both these patients, air samples collected during nebulizer therapy had higher SARS-CoV-2 RNA concentrations compared to control air samples. Also, for particle sizes 0.3-5 µm, particle concentrations were significantly higher during nebulizer therapy than in controls. We were unable to cultivate virus from any of the RT-PCR positive air samples, and it is therefore unknown if the detected virus were replication-competent; however, the significant increase in smaller particles, which can remain airborne for extended periods of time, and increased viral RNA concentrations during treatment may indicate that nebulizer therapy is associated with increased risk of SARS-CoV-2 transmission.

3.
Indoor Air ; 32(2): e13001, 2022 02.
Article in English | MEDLINE | ID: mdl-35225394

ABSTRACT

Since the beginning of the pandemic, the transmission modes of SARS-CoV-2-particularly the role of aerosol transmission-have been much debated. Accumulating evidence suggests that SARS-CoV-2 can be transmitted by aerosols, and not only via larger respiratory droplets. In this study, we quantified SARS-CoV-2 in air surrounding 14 test subjects in a controlled setting. All subjects had SARS-CoV-2 infection confirmed by a recent positive PCR test and had mild symptoms when included in the study. RT-PCR and cell culture analyses were performed on air samples collected at distances of one, two, and four meters from test subjects. Oronasopharyngeal samples were taken from consenting test subjects and analyzed by RT-PCR. Additionally, total aerosol particles were quantified during air sampling trials. Air viral concentrations at one-meter distance were significantly correlated with both viral loads in the upper airways, mild coughing, and fever. One sample collected at four-meter distance was RT-PCR positive. No samples were successfully cultured. The results reported here have potential application for SARS-CoV-2 detection and monitoring schemes, and for increasing our understanding of SARS-CoV-2 transmission dynamics. Practical implications. In this study, quantification of SARS-CoV-2 in air was performed around infected persons with mild symptoms. Such persons may go longer before they are diagnosed and may thus be a disproportionately important epidemiological group. By correlating viral concentrations in air with behavior and symptoms, we identify potential risk factors for viral dissemination in indoor environments. We also show that quantification of total aerosol particles is not a useful strategy for monitoring SARS-CoV-2 in indoor environments.


Subject(s)
Air Microbiology , Air Pollution, Indoor , COVID-19 , SARS-CoV-2/isolation & purification , Aerosols , COVID-19/virology , Humans , Pandemics
4.
Zoology (Jena) ; 140: 125770, 2020 06.
Article in English | MEDLINE | ID: mdl-32298992

ABSTRACT

Sperm cells vary tremendously in size and shape across the animal kingdom. In songbirds (Aves: Passeri), sperm have a characteristic helical form but vary considerably in size. Most of our knowledge about sperm morphology in this group stems from studies of species in the Northern temperate zone, while little is known about the numerous species in the tropics. Here we examined sperm size in 125 Afrotropical songbird species with emphasis on the length of the major structural components (head, midpiece, flagellum), and total sperm length measured using light microscopy. Mean total sperm length varied from 51 µm to 212 µm across species. Those belonging to the Corvoidea superfamily had relatively short sperm with a small midpiece, while those of the three major Passeridan superfamilies Passeroidea, Muscicapoidea and Sylvioidea showed large interspecific variation in total sperm length and associated variation in midpiece length. These patterns are consistent with previous findings for temperate species in the same major clades. A comparative analysis with songbird species from the Northern temperate zone (N = 139) showed large overlap in sperm length ranges although certain temperate families (e.g. Parulidae, Emberizidae) typically have long sperm and certain Afrotropical families (e.g. Cisticolidae, Estrildidae) have relatively short sperm. Afrotropical and temperate species belonging to the same families showed no consistent contrasts in sperm length. Sperm length variation among Afrotropical and Northern temperate songbirds exhibits a strong phylogenetic signal with little or no evidence for any directional latitudinal effect among closely related taxa.


Subject(s)
Adaptation, Physiological , Phylogeny , Songbirds/physiology , Spermatozoa/cytology , Tropical Climate , Animals , Cameroon , Male , Nigeria , Songbirds/genetics , Species Specificity
5.
Environ Microbiome ; 15(1): 14, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-33902714

ABSTRACT

BACKGROUND: Reliable identification and quantification of bioaerosols is fundamental in aerosol microbiome research, highlighting the importance of using sampling equipment with well-defined performance characteristics. Following advances in sequencing technology, shotgun metagenomic sequencing (SMS) of environmental samples is now possible. However, SMS of air samples is challenging due to low biomass, but with the use of high-volume air samplers sufficient DNA yields can be obtained. Here we investigate the sampling performance and comparability of two hand-portable, battery-operated, high-volume electret filter air samplers, SASS 3100 and ACD-200 Bobcat, previously used in SMS-based aerosol microbiome research. RESULTS: SASS and Bobcat consistently delivered end-to-end sampling efficiencies > 80% during the aerosol chamber evaluation, demonstrating both as effective high-volume air samplers capable of retaining quantitative associations. Filter recovery efficiencies were investigated with manual and sampler-specific semi-automated extraction procedures. Bobcat semi-automated extraction showed reduced efficiency compared to manual extraction. Bobcat tended towards higher sampling efficiencies compared to SASS when combined with manual extraction. To evaluate real-world sampling performance, side-by-side SASS and Bobcat sampling was done in a semi-suburban outdoor environment and subway stations. SMS-based microbiome profiles revealed that highly abundant bacterial species had similar representation across samplers. While alpha diversity did not vary for the two samplers, beta diversity analyses showed significant within-pair variation in subway samples. Certain species were found to be captured only by one of the two samplers, particularly in subway samples. CONCLUSIONS: SASS and Bobcat were both found capable of collecting sufficient aerosol biomass amounts for SMS, even at sampling times down to 30 min. Bobcat semi-automated filter extraction was shown to be less effective than manual filter extraction. For the most abundant species the samplers were comparable, but systematic sampler-specific differences were observed at species level. This suggests that studies conducted with these highly similar air samplers can be compared in a meaningful way, but it would not be recommended to combine samples from the two samplers in joint analyses. The outcome of this work contributes to improved selection of sampling equipment for use in SMS-based aerosol microbiome research and highlights the importance of acknowledging bias introduced by sampling equipment and sample recovery procedures.

6.
Environ Microbiome ; 15(1): 1, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-33902731

ABSTRACT

BACKGROUND: Aerosol microbiome research advances our understanding of bioaerosols, including how airborne microorganisms affect our health and surrounding environment. Traditional microbiological/molecular methods are commonly used to study bioaerosols, but do not allow for generic, unbiased microbiome profiling. Recent studies have adopted shotgun metagenomic sequencing (SMS) to address this issue. However, SMS requires relatively large DNA inputs, which are challenging when studying low biomass air environments, and puts high requirements on air sampling, sample processing and DNA isolation protocols. Previous SMS studies have consequently adopted various mitigation strategies, including long-duration sampling, sample pooling, and whole genome amplification, each associated with some inherent drawbacks/limitations. RESULTS: Here, we demonstrate a new custom, multi-component DNA isolation method optimized for SMS-based aerosol microbiome research. The method achieves improved DNA yields from filter-collected air samples by isolating DNA from the entire filter extract, and ensures a more comprehensive microbiome representation by combining chemical, enzymatic and mechanical lysis. Benchmarking against two state-of-the-art DNA isolation methods was performed with a mock microbial community and real-world air samples. All methods demonstrated similar performance regarding DNA yield and community representation with the mock community. However, with subway samples, the new method obtained drastically improved DNA yields, while SMS revealed that the new method reported higher diversity. The new method involves intermediate filter extract separation into a pellet and supernatant fraction. Using subway samples, we demonstrate that supernatant inclusion results in improved DNA yields. Furthermore, SMS of pellet and supernatant fractions revealed overall similar taxonomic composition but also identified differences that could bias the microbiome profile, emphasizing the importance of processing the entire filter extract. CONCLUSIONS: By demonstrating and benchmarking a new DNA isolation method optimized for SMS-based aerosol microbiome research with both a mock microbial community and real-world air samples, this study contributes to improved selection, harmonization, and standardization of DNA isolation methods. Our findings highlight the importance of ensuring end-to-end sample integrity and using methods with well-defined performance characteristics. Taken together, the demonstrated performance characteristics suggest the new method could be used to improve the quality of SMS-based aerosol microbiome research in low biomass air environments.

7.
Microbiome ; 7(1): 160, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31856911

ABSTRACT

BACKGROUND: Mass transit environments, such as subways, are uniquely important for transmission of microbes among humans and built environments, and for their ability to spread pathogens and impact large numbers of people. In order to gain a deeper understanding of microbiome dynamics in subways, we must identify variables that affect microbial composition and those microorganisms that are unique to specific habitats. METHODS: We performed high-throughput 16S rRNA gene sequencing of air and surface samples from 16 subway stations in Oslo, Norway, across all four seasons. Distinguishing features across seasons and between air and surface were identified using random forest classification analyses, followed by in-depth diversity analyses. RESULTS: There were significant differences between the air and surface bacterial communities, and across seasons. Highly abundant groups were generally ubiquitous; however, a large number of taxa with low prevalence and abundance were exclusively present in only one sample matrix or one season. Among the highly abundant families and genera, we found that some were uniquely so in air samples. In surface samples, all highly abundant groups were also well represented in air samples. This is congruent with a pattern observed for the entire dataset, namely that air samples had significantly higher within-sample diversity. We also observed a seasonal pattern: diversity was higher during spring and summer. Temperature had a strong effect on diversity in air but not on surface diversity. Among-sample diversity was also significantly associated with air/surface, season, and temperature. CONCLUSIONS: The results presented here provide the first direct comparison of air and surface bacterial microbiomes, and the first assessment of seasonal variation in subways using culture-independent methods. While there were strong similarities between air and surface and across seasons, we found both diversity and the abundances of certain taxa to differ. This constitutes a significant step towards understanding the composition and dynamics of bacterial communities in subways, a highly important environment in our increasingly urbanized and interconnect world. Video abstract.


Subject(s)
Air Microbiology , Bacteria/classification , Microbiota , Railroads , Bacteria/genetics , Biodiversity , Climate , Humans , Norway , Phylogeny , RNA, Ribosomal, 16S/genetics , Seasons , Urbanization
8.
BMC Evol Biol ; 19(1): 169, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31412767

ABSTRACT

BACKGROUND: Female promiscuity is highly variable among birds, and particularly among songbirds. Comparative work has identified several patterns of covariation with social, sexual, ecological and life history traits. However, it is unclear whether these patterns reflect causes or consequences of female promiscuity, or if they are byproducts of some unknown evolutionary drivers. Moreover, factors that explain promiscuity at the deep nodes in the phylogenetic tree may be different from those important at the tips, i.e. among closely related species. Here we examine the relationships between female promiscuity and a broad set of predictor variables in a comprehensive data set (N = 202 species) of Passerides songbirds, which is a highly diversified infraorder of the Passeriformes exhibiting significant variation in female promiscuity. RESULTS: Female promiscuity was highly variable in all major clades of the Passerides phylogeny and also among closely related species. We found several significant associations with female promiscuity, albeit with fairly small effect sizes (all R2 ≤ 0.08). More promiscuous species had: 1) less male parental care, particularly during the early stages of the nesting cycle (nest building and incubation), 2) more short-term pair bonds, 3) greater degree of sexual dichromatism, primarily because females were drabber, 4) more migratory behaviour, and 5) stronger pre-mating sexual selection. In a multivariate model, however, the effect of sexual selection disappeared, while the other four variables showed additive effects and together explained about 16% of the total variance in female promiscuity. Female promiscuity showed no relationship with body size, life history variation, latitude or cooperative breeding. CONCLUSIONS: We found that multiple traits were associated with female promiscuity, but these associations were generally weak. Some traits, such as reduced parental care in males and more cryptic plumage in females, might even be responses to, rather than causes of, variation in female promiscuity. Hence, the high variation in female promiscuity among Passerides species remains enigmatic. Female promiscuity seems to be a rapidly evolving trait that often diverges between species with similar ecologies and breeding systems. A future challenge is therefore to understand what drives within-lineage variation in female promiscuity over microevolutionary time scales.


Subject(s)
Biological Evolution , Sexual Behavior, Animal , Songbirds/genetics , Animals , Body Size , Breeding , Ecology , Female , Male , Pair Bond , Phylogeny , Songbirds/physiology
9.
Mol Ecol ; 27(17): 3498-3514, 2018 09.
Article in English | MEDLINE | ID: mdl-30040161

ABSTRACT

Understanding the genetic architecture of quantitative traits can provide insights into the mechanisms driving phenotypic evolution. Bill morphology is an ecologically important and phenotypically variable trait, which is highly heritable and closely linked to individual fitness. Thus, bill morphology traits are suitable candidates for gene mapping analyses. Previous studies have revealed several genes that may influence bill morphology, but the similarity of gene and allele effects between species and populations is unknown. Here, we develop a custom 200K SNP array and use it to examine the genetic basis of bill morphology in 1857 house sparrow individuals from a large-scale, island metapopulation off the coast of Northern Norway. We found high genomic heritabilities for bill depth and length, which were comparable with previous pedigree estimates. Candidate gene and genomewide association analyses yielded six significant loci, four of which have previously been associated with craniofacial development. Three of these loci are involved in bone morphogenic protein (BMP) signalling, suggesting a role for BMP genes in regulating bill morphology. However, these loci individually explain a small amount of variance. In combination with results from genome partitioning analyses, this indicates that bill morphology is a polygenic trait. Any studies of eco-evolutionary processes in bill morphology are therefore dependent on methods that can accommodate polygenic inheritance of the phenotype and molecular-scale evolution of genetic architecture.


Subject(s)
Beak/anatomy & histology , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Sparrows/genetics , Animals , Genetic Association Studies , Models, Genetic , Norway , Phenotype , Principal Component Analysis , Sparrows/anatomy & histology
10.
Evolution ; 71(5): 1258-1272, 2017 05.
Article in English | MEDLINE | ID: mdl-28257556

ABSTRACT

The study of species diversification can identify the processes that shape patterns of species richness across the tree of life. Here, we perform comparative analyses of species diversification using a large dataset of bark beetles. Three examined covariates-permanent inbreeding (sibling mating), fungus farming, and major host type-represent a range of factors that may be important for speciation. We studied the association of these covariates with species diversification while controlling for evolutionary lag on adaptation. All three covariates were significantly associated with diversification, but fungus farming showed conflicting patterns between different analyses. Genera that exhibited interspecific variation in host type had higher rates of species diversification, which may suggest that host switching is a driver of species diversification or that certain host types or forest compositions facilitate colonization and thus allopatric speciation. Because permanent inbreeding is thought to facilitate dispersal, the positive association between permanent inbreeding and diversification rates suggests that dispersal ability may contribute to species richness. Bark beetles are ecologically unique; however, our results indicate that their impressive species diversity is largely driven by mechanisms shown to be important for many organism groups.


Subject(s)
Biological Evolution , Coleoptera/genetics , Genetic Speciation , Animals , Biological Factors , Ecology , Fungi
11.
BMC Evol Biol ; 16(1): 222, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27760521

ABSTRACT

BACKGROUND: Bergmann's rule proposes that animals in cold habitats will be larger than those in warm habitats. This prediction has been tested thoroughly at the intraspecific level, but few studies have investigated the hypothesis with interspecific data using phylogenetic comparative approaches. Many clades of mammals have representatives in numerous distinct biomes, making this order highly suitable for a large-scale interspecific assessment of Bergmann's rule. Here, we evaluate Bergmann's rule within 22 mammalian families-with a dataset that include ~35 % of all described species-using a phylogenetic comparative approach. The method is based on an Ornstein-Uhlenbeck model of evolution that allows for joint estimation of adaptation and constraints (phylogenetic inertia) in the evolution of a trait. We use this comparative method to investigate whether body mass evolves towards phenotypic optima that are functions of median latitude, maximum latitude or temperature. We also assess the closely related Allen's rule in five families, by testing if relative forelimb length evolves as a function of temperature or latitude. RESULTS: Among 22 mammalian families, there was weak support for Bergmann's rule in one family: A decrease in temperature predicted increased body mass in Canidae (canids). We also found latitude and temperature to significantly predict body mass in Geomyidae (pocket gophers); however, the association went in the opposite direction of Bergmann's predictions. Allen's rule was supported in one of the five examined families (Pteropodidae; megabats), but only when forelimb length evolves towards an optimum that is a function of maximum latitude, not median latitude or temperature. CONCLUSIONS: Based on this exhaustive assessment of Bergmann's rule, we conclude that factors other than latitude and temperature are the major drivers of body mass evolution at the family level in mammals.


Subject(s)
Body Size , Mammals/genetics , Models, Biological , Animals , Body Weight , Forelimb/anatomy & histology , Geography , Phylogeny , Regression Analysis , Species Specificity
12.
BMC Evol Biol ; 16: 37, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26877088

ABSTRACT

BACKGROUND: Invasive species can have devastating effects on native ecosystems and therefore impose a significant threat to human welfare. The introduction rate of invasive species has accelerated dramatically in recent times due to human activity (anthropogenic effects), with a steadily growing pool of widespread tramp species. We present an in-depth analysis of four pantropical species of Xyleborus ambrosia beetles (Xyleborus volvulus, Xyleborus perforans, Xyleborus ferrugineus, and Xyleborus affinis) with similar ecology (fungus cultivation in dead wood), reproductive biology (permanent inbreeding) and genetic system (haplodiploidy). The unique combination of reproductive traits and broad host plant usage pre-adapts these beetles for colonizing of new areas. RESULTS: We found that all four species were broadly distributed long before human-assisted dispersal became common, and that the impact of anthropogenic effects varied among the species. For X. volvulus, X. perforans, and X. affinis there was evidence of ancient establishment in numerous regions, but also of abundant recent introductions into previously colonized areas. For X. ferrugineus, we found clear biogeographical structuring of old clades, but little evidence for recent successful introductions. CONCLUSIONS: Our results indicate that current human-aided transoceanic dispersal has strongly affected the genetic makeup of three of the species in this study. However, current biogeographical patterns of all four species are equally, if not more strongly, influenced by ancient establishment on different continents.


Subject(s)
Animal Distribution , Coleoptera/physiology , Introduced Species , Phylogeography , Animals , Coleoptera/classification , Ecosystem , Female , Genetic Variation , Weevils
13.
Mol Ecol ; 24(1): 180-91, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25407440

ABSTRACT

A common challenge in phylogenetic reconstruction is to find enough suitable genomic markers to reliably trace splitting events with short internodes. Here, we present phylogenetic analyses based on genomewide single-nucleotide polymorphisms (SNPs) of an enigmatic avian radiation, the subspecies complex of Afrocanarian blue tits (Cyanistes teneriffae). The two sister species, the Eurasian blue tit (Cyanistes caeruleus) and the azure tit (Cyanistes cyanus), constituted the out-group. We generated a large data set of SNPs for analysis of population structure and phylogeny. We also adapted our protocol to utilize degraded DNA from old museum skins from Libya. We found strong population structuring that largely confirmed subspecies monophyly and constructed a coalescent-based phylogeny with full support at all major nodes. The results are consistent with a recent hypothesis that La Palma and Libya are relic populations of an ancient Afrocanarian blue tit, although a small data set for Libya could not resolve its position relative to La Palma. The birds on the eastern islands of Fuerteventura and Lanzarote are similar to those in Morocco. Together they constitute the sister group to the clade containing the other Canary Islands (except La Palma), in which El Hierro is sister to the three central islands. Hence, extant Canary Islands populations seem to originate from multiple independent colonization events. We also found population divergences in a key reproductive trait, viz. sperm length, which may constitute reproductive barriers between certain populations. We recommend a taxonomic revision of this polytypic species, where several subspecies should qualify for species rank.


Subject(s)
Biological Evolution , Passeriformes/classification , Phylogeny , Polymorphism, Single Nucleotide , Africa, Northern , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Genetics, Population , Libya , Male , Passeriformes/genetics , Spain , Spermatozoa/cytology
14.
Evolution ; 67(10): 3073-4, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24094357

ABSTRACT

We recently reported a positive association between female promiscuity and genetic diversity across passerine birds, and launched the hypothesis that female promiscuity acts as a balancing selection, pressure maintaining genetic diversity in populations (Gohli et al.2013). Spurgin (2013) questions both our analyses and interpretations. While we agree that the hypothesis needs more comprehensive empirical testing, we find his specific points of criticism unjustified. In a more general perspective, we call for a more explicit recognition of female mating preferences as mechanisms of selection in population genetics theory.


Subject(s)
Genetic Variation , Mating Preference, Animal , Selection, Genetic , Sparrows/genetics , Animals , Female , Male
15.
Evolution ; 67(5): 1406-19, 2013 May.
Article in English | MEDLINE | ID: mdl-23617917

ABSTRACT

Passerine birds show large interspecific variation in extrapair paternity rates. There is accumulating evidence that such promiscuous behavior is driven by indirect, genetic benefits to females. Sexual selection theory distinguishes between two types of genetic benefits, additive and nonadditive effects, mediated by preferences for good and compatible genes, respectively. Good genes preferences should imply directional selection and mating skew among males, and thus reduced genetic diversity in the population. In contrast, compatible genes preferences should give balancing selection that retains genetic diversity. Here, we test how well these predictions fit with patterns of variation in genetic diversity and promiscuity levels among passerine birds. We found that more promiscuous species had higher nucleotide diversity at autosomal introns, but not at Z-chromosome introns. We also found that major histocompatibility complex (MHC) class IIB alleles had higher sequence diversity, and therefore should recognize a broader spectrum of pathogens, in more promiscuous species. Our results suggest that female promiscuity targets a multitude of autosomal genes for their nonadditive, compatibility benefits. Also, as immunity genes seem to be of particular importance, we hypothesize that interspecific variation in female promiscuity among passerine birds has arisen in response to the strength of pathogen-mediated selection.


Subject(s)
Genetic Variation , Mating Preference, Animal , Selection, Genetic , Sparrows/genetics , Animals , DNA-Binding Proteins/genetics , Female , Gene Frequency , Genes, MHC Class II/genetics , Introns/genetics , Male
16.
Commun Integr Biol ; 3(1): 9-11, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20539774

ABSTRACT

In light of recent work, we will expand on the role and variability of aposematic signals. The focus of this review will be the concepts of reliability and honesty in aposematic signaling. We claim that reliable signaling can solve the problem of aposematic evolution, and that variability in reliability can shed light on the complexity of aposematic systems.

17.
PLoS One ; 4(6): e5779, 2009 Jun 03.
Article in English | MEDLINE | ID: mdl-19492013

ABSTRACT

Several pathways have been postulated to explain the evolution of warning coloration, which is a perplexing phenomenon. Many of these attempt to circumvent the problem of naïve predators by inferring kin selection or neophobia. Through a stochastic model, we show that a secreted secondary defence chemical can provide selective pressure, on the individual level, towards developing warning coloration. Our fundamental assumption is that increased conspicuousness will result in longer assessment periods and divergence from the predators' searching image, thus reducing the probability of a predator making mistakes. We conclude that strong olfactory signaling by means of chemical secretions can lead to the evolution of warning coloration.


Subject(s)
Predatory Behavior , Smell , Adaptation, Physiological , Animal Communication , Animals , Biological Evolution , Chickens , Computer Simulation , Insecta , Models, Biological , Models, Statistical , Models, Theoretical , Pigmentation , Probability , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...